Generation of intracellular reactive oxygen species and genotoxicity effect to exposure of nanosized polyamidoamine (PAMAM) dendrimers in PLHC-1 cells in vitro.
نویسندگان
چکیده
Polyamidoamine (PAMAM) dendrimers have previously been demonstrated to elicit systematically variable cyto- and eco-toxic responses, promising as the basis for structure-activity relationships governing nanotoxicological responses. In this study, increased production of intracellular reactive oxygen species (ROS), genotoxicity and apoptosis due to in vitro exposure of fish hepatocellular carcinoma cells to dendrimer generations G4, G5 and G6 is demonstrated. A PAMAM dendrimer generation dependent increase in ROS and genotoxicity was observed, consistent with our previous studies. The toxicological responses correlate well with the nanoparticle surface chemistry, specifically, the number of surface amino groups per generation. Although ROS production initially increases approximately linearly, it saturates at higher doses. Notably, normalized to the molar dose of surface amino groups, the dose-dependent ROS production for different generations overlap exactly, indicating that the response is due to these functional units. The genotoxicity response is also well correlated to the number of surface amino groups and therefore generation of PAMAM dendrimers. The observed genotoxicity, related to DNA damage, is related to the generation and dose dependent production of intracellular ROS, at low levels. At the higher ROS levels, increased DNA damage is associated with the onset of necrosis.
منابع مشابه
Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells.
The immunotoxicity of three generations of polyamidoamine (PAMAM) dendrimers (G-4, G-5 and G-6) was evaluated in mouse macrophage cells in vitro. Using the Alamar blue and MTT assays, a generation dependent cytotoxicity of the PAMAM dendrimers was found whereby G-6 > G-5 > G-4. The toxic response of the PAMAM dendrimers correlated well with the number of surface primary amino groups, with incre...
متن کاملPolyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation.
UNLABELLED Mechanisms underlying the in vitro cytotoxicity of Polyamidoamine nano-dendrimers in human keratinocytes are explored. Previous studies demonstrated a systematic, dendrimer-generation-dependent cytotoxicity, oxidative stress, and genotoxicity. The emerging picture is of dendrimer endocytosis, endosomal rupture and subsequent mitochondrial attack and cell death. To understand the unde...
متن کاملEnhanced photodynamic efficacy and efficient delivery of Rose Bengal using nanostructured poly(amidoamine) dendrimers: potential application in photodynamic therapy of cancer
Photodynamic therapy (PDT) is a promising treatment methodology whereby diseased cells and tissues are destroyed by reactive oxygen species (ROS) by using a combination of light and photosensitizers (PS). The medical application of Rose Bengal (RB), photosensitizer with very good ROS generation capability, is limited due to its intrinsic toxicity and insufficient lipophilicity. In this report, ...
متن کاملStudying the Corrosion Protection Behavior of an Epoxy Composite Coating Reinforced with Functionalized Graphene Oxide by Second and Fourth Generations of Poly(amidoamine) Dendrimers (GO-PAMAM-2, 4)
In this research, graphene oxide (GO) nanoparticles were modified by second and fourth generations of poly(amidoamine) dendrimers in order to improve the particle dispersion quality in the epoxy matrix and therefore its barrier anti-corrosion performance. Confirmation on the GO surface modification by Polyamidoamine generation 2 (PAMAM2) and polyamidoamin generation 4 (PAMAM4) was carried o...
متن کاملSynthesis and characterization of supramolecule self-assembly polyamidoamine (PAMAM) G1-G1 NH2, CO2H end group Megamer
Supramolecule self assembly polyamidoamine (PAMAM) dendrimer refers to the chemical systems made up of a discrete number of assembled molecular subunits or components. These strategies involve the covalent assembly of hierarchical components reactive monomers, branch cells or dendrons around atomic or molecular cores according to divergent/convergent dendritic branching principles, systematic f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Aquatic toxicology
دوره 132-133 شماره
صفحات -
تاریخ انتشار 2013